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Abstract-The intricate interplay of source dynamics, unre-
liable channels, and staleness of information has long been 
recognized as a significant impediment for the receiver to achieve 
accurate, timely, and goal-oriented decision making. Thus, a 
plethora of promising metrics, such as Age of Information and 
Value of Information have emerged to quantify these adverse 
factors. Optimizing these metrics indirectly improves the goal-
oriented utility of decision making. Nevertheless, no metric has 
been devised to directly evaluate the utility. To this end, this 
paper investigates a novel tensor-based metric, named Goal-
oriented Tensor (GoT), to directly quantify the impact of semantic 
mismatches on decision making. Leveraging the GoT, we design 
a sampler-decision maker pair that works collaboratively to 
achieve a shared goal. This sampling-decision making co-design is 
challenging since the sampler and the decision maker are strongly 
coupled. To decouple these processes, we formulate the problem 
as an infinite-horizon Decentralized Partially Observable Markov 
Decision Process (Dec-POMDP) to conjointly deduce the optimal 
joint policy. We tested the sampler-decision maker co-design in 
terms of goal achievement utility and sampling rate, achieving 
significant performance advancements over conventional state-
of-the-art sampling methodologies. 

Index Terms-Goal-oriented Semantic communications, Goal-
oriented Tensor, Status updates, Age of Information, Age of 
Incorrect Information, Value of Information. 

I. INTRODUCTION 

Age of Information (Aol) has emerged as an important 
metric to capture the data freshness perceived by the receiver 
[1] and to facilitate the development of freshness-critical net-
work design. Since its inception, Aol has garnered significant 
research attention and has been extensively analyzed and 
optimized to improve the performance of queuing systems, 
physical-layer communications, MAC-layer communications, 
Internet of Things, etc. [2]. Since a fresh message typically 
contains critical and valuable information to improve the pre-
cision and timeliness of decision-making processes, optimizing 
Aol has been an attractive research interest. 

However, Aol exhibits several critical shortcomings. Specif-
ically, (a) Aol does not provide a direct measure of informa-
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tion value; (b) Aol does not consider the content dynamics of 
source data; (c) Aol ignores the effect of End-to-End (E2E) 
information mismatch on the decision-making process. To 
address these limitations, numerous Aol variants have been 
extensively investigated. One typical approach in this research 
avenue is to impose a non-linear penalty on Aol [3]-[5]. 
This non-linear penalty is called Value of Information (Vol), 
which mitigates the shortcoming (a). Other research attempt to 
address the shortcoming (b) [6]-[8]. In [6], Age of Changed 
Information (AoCI) is proposed to address the ignorance of 
content dynamics of Aol. In this regard, unchanged statuses 
do not necessarily provide new information and thus are not 
prioritized for transmission. In [7], the authors proposed a new 
metric to integrate both similarity and age of information to 
facilitate task-oriented semantics-aware UAV control. In [8], 
the authors propose an age penalty named Age of Synchroniza-
tion (AoS) to address the shortcoming (b). Mean Square Error 
(MSE) and its variants, like Urgency of Information (Uol) [9] 
and Age of Incorrect Information (Aoll) [10] are introduced 
to address the shortcoming (c). 

Though the above metrics have addressed the shortcomings 
of Aol, they do not explicitly reveal how these metrics affect 
the utility of decision making. To answer this question, [11]-
[14] introduce a novel metric termed Cost of Actuation Error 
to delve into the cost resulting from the error actuation due 
to imprecise real-time estimations. Specifically, the Cost of 
Actuation Error C x x represents the cost under the E2E 

A l , l 

mismatch (Xt , Xt) X,cf.Xt , where Xt is the semantic status at 
the source at time t and Xt represents the estimated semantic 
status at the receiver at time t. The metric unveils that the 
utility of decision making is dependent on the E2E semantic 
mismatch category, instead of the mismatch duration (Aoll) or 
mismatch degree (MSE) only. For example, an E2E semantic 
mismatch that a fire is estimated as no fire will result in higher 
cost; while the opposite scenario will result in lower cost. The 
cost per unit of time is directly dependent on the distortion 
category, rather than the mismatch duration. 

The metric Cost of Actuation Error maps E2E semantic 
mismatch to real-world actuation error cost. However, this 
metric is still limited in the following aspects: i) the method 
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to obtain a Cost of Error Actuation implicitly necessitates a 
pre-established fixed decision-making policy, which remains 
unclear; ii) it does not consider the context issue, which also 
affects the significance of information; iii) it holds that if 
Xt = Xt, then C x, ,x, = 0, thereby signifying that errorless 
actuation necessitates no energy expenditure, To address these 
issues, the present authors have recently proposed a new metric 
named Goal-oriented Tensor (GoT) in [15], which, compared 
to Cost of Error Actuation, introduces a 3-dimension tensor-
based approach to describe the true utility of decision making. 
In this paper, we further technically extend the dimension of 
GoT and exploit its potential to achieve a goal-oriented E2E 
sampler-decision maker co-design, the contributions of this 
work are summarized as follows: 
• We introduce a 4-dimension GoT as a novel metric to 
directly describe the decision utility issue. This metric is an 
extension of the 3-dimension GoT in [15]. A new dimension, 
the decision policy 1r A is introduced in this paper to determine 
the value in GoT. This extension is crucial as it facilitates the 
co-design of sampling and decision-making processes. 
• Three aspects of decision-making utility are fully considered 
in this paper: i) the future evolution of the source; ii) the 
instant cost at the source; iii) the energy and resources con-
sumed by actuation. Compared to the state-of-the-art results 
in [11]-[14], utility i) and iii) are further considered. 
• We accomplish the goal-oriented sampler-decision maker 
co-design. To the best of our knowledge, this represents the 
first effort that co-design the semantics-aware sampling and 
decision making. To jointly determine the sampling policy 
and decision-making policy, we introduce the team decision 
theory and formulate this problem as a two-agent infinite-
horizon Dec-POMDP problem, with one agent embodying the 
sampler and the other representing the decision maker. We 
designed the Brute-Force-Search-RV! algorithm to solve this 
problem, which is proven optimal and outperforms prevailing 
state-of-the-art goal-irrelevant sampling methodologies. 

II. SYST E M MODEL 

We consider a time-slotted perception-actuation loop as 
shown in Fig. 1. The semantics Xt E S = { s1 , • • • , s1s 1} 
and context <I>t E V = { v1 , • • • , v1v1} are extracted from 
the observed source, which are then input into a sampler to 
determine the significance of Xt and decide if it warrants 
transmission via an unreliable channel. The estimated semantic 
status denoted by Xt E S represents the most recently 
received semantic status. We consider a perfect and delay-
free feedback channel [ll]-[14], with ACK representing a 
successful transmission and NACK representing the otherwise. 
In this setup, the sampler could perfectly capture the estimated 
status at the receiver Xt, which implies that the sampler is fully 
observable. The binary indicator as (t) = 1rs(Xt , <I>t , Xt ) E 
{ 0, 1} signifies the sampling and transmission action at time 
slot t, with value 1 representing sampling and transmission, 
and value O the otherwise. 1r s : S x V x S -+ { 0, 1} represents 
the sampling policy. The decision maker at the receiver will 
make decisions aA(t) = 7rA(X(t)) E AA = {a1, • • • ,alAA I} 

based on the estimated status Xt, where KA : S -+ AA 
represents the decision making policy. 

In this system, our objective is to facilitate collaboration 
between the semantics-aware sampler and the decision maker. 
This interaction involves a balance: frequent sampling typi-
cally yields precise estimations but incurs substantial sampling 
costs. Conversely, infrequent sampling conserves energy at 
the source yet necessitates the decision maker to allocate 
additional resources to meet the objective. 

Actuator 

I " -f 
__ __;;aA:..:..(t.:,_;) : :.,:"'~----------, 
Utility ' .. ,.. I [._~:!_J Sampler aA(t) 

: rrs(,) , _ 
Xt : ~~ Unreliable t4: Decision : 

• ~ as(t) : : Channel ,: \ MakerrrA(-) : 

----i::::=--.....:1 . • •• i .. rr,. ~=ACK r 
--------·' 
Sensor 

Fig. 1. Illustration of our considered system where transmitted semantic status 
arrives at a receiver for decision making to achieve a certain goal. 

A. Semantics and Context Dynamics 
We consider a controlled Discrete Markov source: 

Pr (Xt+l = Su IXt = S i , aA (t) = am , <I>t = Vk) = Pi~~m). 
(1) 

Here the dynamics of semantics X(t) is dependent on both 
the decision making aA(t) and context <I>t . Furthermore, we 
consider that the context <I>t is a Markov chain, given as: 

(2) 

In this paper, the dynamics of semantics and context are 
independent of each other. 

B. Unreliable Channel and Estimate Transition 
We assume that the channel realizations exhibit indepen-

dence and identical distribution (i.i.d.) across time slots, 
following a Bernoulli distribution. Particularly, the channel 
realization ht satisfies that Pr ( ht = l) = p s and the failure 
probability as Pr (ht = 0) = 1 - Ps, with Ps representing 
the successful transmission probability. To characterize the 
dynamics of Xt, we consider two cases as described below: 
• as(t) = 0. In this case, the sampler and transmitter remain 
idle, manifesting that there is no new knowledge given to the 
receiver, i.e., x t+ l = Xt: 

Pr ( Xt+l = x lxt = Sj , as(t) = 0) = ]_{x= s; } · (3) 

• as ( t) = 1. In this case, the sampler and transmitter transmit 
the current semantic status Xt through an unreliable channel. 
As the channel is unreliable, we differentiate between two 
distinct situations: ht = l and ht = 0: 
(a) ht = l. In this case, the transmission is successful. As 
such, the estimate at the receiver x t+ l is nothing but X(t), 
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and the transition probability is 

Pr (xt+ l = x lx t = Sj , X t = si, as (t) = 1, ht = 1) 

= ]_{x=si} · 
(4) 

(b) ht = 0. In this case, the transmission is not successfully 
decoded by the receiver. As such, the estimate at the receiver 
x t+ l remains X(t). In this way, the transition probability is 

Pr (.xt+i = x lxt = Sj ,Xt = Si, a s (t) = 1, h t = 0) = ]. { x=s; } · 
(5) 

As the channel realization ht is independent with the process 
of X t, X t, and as (t), we have that 

Pr (.xt+ l = x lxt = Sj, X t = Si, a s (t) = 1) 
= LP (h t ) Pr ( .Xt+1 = x I.Xt = Bj, X t = Bi, a s (t ) = 1, h t ) 

h , 

= PS· ]. { x=si} + (1 - Ps ) • ]. { x=s; } · 
(6) 

Combining (3) with (6) yields the dynamics of the estimate. 

C. Goal-oriented Decision Making and Actuating 

We note that the previous works focus on the sampling 
process only, regardless the pragmatics of sampled informa-
tion, which is achieved through decision-making and actuating. 
To this end, our paper integrates the decision-making and 
actuation processes into the sampling policy design. The 
decision-making and actuation enable the conversion of sam-
pled information into ultimate effectiveness. Here the decision 
making at time slot tis denoted by aA(t) = KA(Xt), with KA 
representing the deterministic decision-making policy. 

D. Metric: Goal Characterization Through GoT 

A three-dimension GoT could be defined by a mapping: 

(Xt , <l>t , Xt) E S x V x S !+ GoT(t) E JR. (7) 

In this regard, the GoT, denoted by L.:(Xt , <l>t, Xt ) or GoT(t) , 
indicates the instant cost of the system at time slot t , with 
the knowledge of (Xt, <Pt, Xt )- From [15] , we have shown 
that a GoT, given a specific triple-tuple (Xt , Xt, <l>t) and a 
decision-making policy KA, could be calculated by 

GoT(t) = L.:(Xt , <Pt , Xt l1r A) 

= [c1(Xt , <Pt) - C2(1rA(Xt))r + C3(1rA(Xt)) , 
(8) 

where the status inherent cost C1(Xt , <l>t) quantifies the in-
herent cost under different semantics-context pairs (Xt , <l>t) 
in the absence of external influences; the actuation gain cost 
C2 ( 1r A ( Xt )) quantifies the prospective reduction in severity 
resulting from the actuation 1r A ( X ( t)); the actuation inherent 
cost C3(1rA(Xt)) reflects the resources consumed by a partic-
ular actuation 1r A ( X ( t)). The ramp function [ ·] + ensures that 
any actuation 1r A (Xt) reduces the cost to a maximum of 0. A 
visualization of a specific 3-dimension GoT is shown in Fig. 

2, which is obtained through the following definition: 

C1 (Xt, il>t) = ( 0 ~ ~ ~ ) , 1fA( Xt) = [0, 1, 2], 
1 0    2 5 (9) 

C2( 1rA( X t)) = 21rA(Xt), C3(1rA(.Xt) ) = 1fA( Xt). 

In this paper, the 3-dimension GoT GoT(t) is extended to 
the 4-dimensions GoT GoTn A ( t) by integrating the actuation 
policies 1r A as an additional dimension. Under different 1r A, 

we could obtain different 3-dimension GoT. 

r
x,: o ~ 
x, - 1 

x, - 2 
Xc=O.ic= l X1 =2 

C2{or,1(X1)) j+ + 

+ 

+ 

Fig. 2. A visualized example for characterizing the GoT through (8) and (9). 
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Fig. 3. An illustration of Ao!, AoCI, Aoll, and GoT in a time-slotted status 
update system. Here, the value of GoT is obtained from the tensor obtained 
on the right-hand side of Fig. 2. 

To illustrate how GoT characterizes the goal, Fig. 3 exhibits 
an instantaneous progression of Aol, AoCI, Aoll, and GoT. 
From the time slots t = 0, 1, 9, 10 in Fig. 3, the inherent 
limitation of Aoll emerges conspicuously, as a duration of 
mismatch may not necessarily culminate in a cost increase. 
Instead, the category of E2E semantic mismatch will make 
sense to the true instant cost. 

Ill. PROBLEM FORMULATION AND SOLUTION 

Conventionally, the sampling policy and the decision-
making policy are designed in a two-stage manner: first, 
they determine the optimal sampling policy based on AoI 
or its variants; and second, they accomplish decision making 
given the sampling policy. This two-stage separation arises 
from the inherent limitation of existing metrics that they 
fail to capture the closed-loop decision utility. However, the 
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four-dimension GoT empowers us to achieve the co-design 
of sampling and decision making. Intuitively, a co-design 
approach holds the potential to outperform designs that treat 
components separately. 

However, achieving the co-design is a complex work since 
the sampling and decision-making processes are strongly 
coupled. To this end, we introduce the team decision theory 
to decouple them. Two agents, one embodying the sampler 
and the other the decision maker, collaborate to achieve a 
shared goal. We aim at determining a joint deterministic policy 
rrc = (7rs , 7rA) that minimizes the long-term average cost of 
the system. It is considered that the sampling and transmission 
of an update also consumes energy, incurring a Cs cost. In 
this case, the instant cost of the system could be clarified by 
GoT1rA (t) + Cs · as(t), and the problem is characterized as: 

Pl : min Jim sup 1'"JE7r c (Tf,l GoT1rA (t) + Cs · as(t)) , 
7rcEY T ➔ cxo t=O 

(10) 
where rrc = ( 7rs, 7l' A) denotes the joint sampling and decision 
policy, comprising 7rs = (as(O),as(l) , .. ·) and 7l'A = 
(aA(O) , aA(l), ···),which correspond to the sampling action 
sequence and actuation sequence, respectively. 

A. Dec-POMDP Formulation 
We formulate problem Pl as a Decentralized Partially Ob-

servable Markov Decision Processes (DEC-POMDP) problem, 
which is initially introduced in [16] to solve the coopera-
tive sequential decision issues for distributed multi-agents. 
Within a Dec-POMDP framework, a team of agents cooperates 
to achieve a shared goal, relying solely on their localized 
knowledge. A Dec-POMDP could be denoted by a tuple 
uftDEC- POMDP £ (n,I,A,T,0 ,0,R): 
• n denotes the number of agents. In problem Pl we have n = 
2, signifying the presence of two agents: one agent Agents 
embodies the sampler, while the other represents the decision 
maker, denoted by Agent A. 
• I is the set of the global system status. In Pl, this is 
characterized by (Xt, Xt, <I>t ) E S x S x V. For the sake 
of brevity, we henceforth denote W t = (Xt, Xt, <I>t ) in the 
sequel. 
• T is the transition function defined by 

T (w, a, w') £ Pr(Wt +l = w' IWt = w, at = a), (11) 

which is defined by the transition probability from global 
status Wt = w to status Wt+l = w', after the agents in 
the system taking a joint action at = a = (a s (t) , aA(t)). 
For the sake of concise notation, we let p(w' lw, a) symbolize 
T (w, a , w') in the subsequent discourse. 

Lemma 1. The transition functions of the Dec-POMDP: 

p((su,x,v,.) l(s i ,Sj , Vk) , (l,am )) = pt~m) ·Pk,r 

• (Ps • ]_{ x=s;} + (l - Ps) • ]_{x=s; }) 
(12) 

P ( (su , x , Vr) I (si, Sj , Vk) , (0, am)) = Pi~~m ) • Pk ,r • ]_{x=sj } , 
(13) 

for any x E S and indexes i, j, u E {1, 2, • • • , IS i}, k, r E 
{1, 2, .. · , IVI}, and m E {1, 2, .. · , IAAI}. 

Proof Refer to [17, Appendix A] for the proof. □ 

•A = A s x AA, with A s £ {O , 1} representing the action 
set of the sampler, and AA £ { a 0 , • • •  , aM - d representing 
the action set of the decision maker. 
• 0 = Os x OA, with Os signifies the sampler's observation 
domain. In this instance, the sampler Agents is entirely 
observable, with Os encompassing the comprehensive system 
state o~) = Wt, OA signifies the actuator's observation 
domain. In this case, the decision-maker AgentA is partially 
observable, with OA comprising o~ ) = .X(t). The joint 
observation at time instant t is denoted by Ot = (o~), o~)) . 
• 0 = Os x O A represents the observation function,  where 
0 s and O A denotes the observation function of the sampler 
Agents and the actuator AgentA, respectively, defined as: 

O(w , o) £ Pr(ot = o lWt = w), (14) 

Os(w, os) £ Pr(o~) = os lWt = w), (15) 

OA(w,oA) £ Pr(o~) = oA IWt = w). (16) 

The observation function of an agent Agenti signifies the 
conditional probability of agent Agenti perceiving oi, con-
tingent upon the prevailing global system state as Wt = w . 
For the sake of brevity, we henceforth let PA (oA lw) represent 
0 A(w, oA) and Ps (os lw) represent Os (w , oA) in the sub-
sequent discourse. In our considered model, the observation 
functions are deterministic, characterized by lemma 2. 

Lemma 2. The observation functions of the Dec-POMDP: 

Ps ((su, Sr, Vq) l(si, Sj , Vk)) = ]_{(su,Sr,vq )=(s ,,s;,vk )} , (17) 
PA (szl (si,Sj , Vk)) = ]_{sz=s; }· (18) 

for indexes z , i, j , u, r E {1 , 2, · · · IS i}, and k, q E 
{1, 2, .. · IVI}. 

• R is the reward function, characterized by a mapping 
I x A --+ R In the long-term average reward maximizing 
setup, resolving a Dec-POMDP is equivalent to addressing 
the following problem: 

min limsup 1'"JE7rc - I: r(t) . ( T- 1 ) 
7r cE Y T ➔ cxo t = O 

(19) 

Subsequently, to establish the congruence with the problem 
Pl, the reward function is correspondingly defined as: 

B. Solutions to the lnfinite-Horizan Dec-POMDP 
Solving a Dec-POMDP is known to be NEXP-complete 

for the finite-horizon setup [16]. For an infinite-horizon Dec-
POMDP problem, finding an optimal policy for a Dec-POMDP 
problem is usually undecidable. However, both the sampling 
and decision-making policies are deterministic within our con-
sidered model, given as as (t) = 7rs(w) and aA(t) = 7rA(oA)-

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 02,2024 at 00:57:07 UTC from IEEE Xplore.  Restrictions apply. 



In this case, it is feasible to determine a joint optimal policy via 
Brute Force Search across the decision-making policy space. 

The idea is inspired by that given a deterministic decision 
policy 7rA , the sampling problem can be formulated as a 
standard MDP problem: 

Proposition 1. Given a deterministic decision-making policy 
1r A, the optimal sampling problem could be formulated by a 
standard MDP problem Atr:;;'tlP £ (I , As , T~ jjp, R ), where 
the elements are given as follows: 
• I: the same as the pre-defined Dec-POMDP tuple. 
• A s = {O, 1 }: the sampling and transmission action set. 
• T1r A: the transition function given a deterministic decision 
policy 1r A, which is 

TTC A(w,as, w') = p1rA (w' lw,as ) 

= L P (w' lw , (a s , 7rA(oA))) PA(oA lw), (21 ) 
OAEOA 

where p (w' lw , (a s , 7rA(oA))) could be obtained by Lemma 1 
and p( o A lw) could be obtained by Lemma 2. 
• R: the same as the pre-defined Dec-POMDP tuple. 

We now proceed to solve the MDP problem Atr:;;tp- To 
deduce the optimal sampling policy under decision policy 1r A, 

it is imperative to resolve the Bellman equations [18]: 

e;A + V,rA(w ) = max {n1l"A (w , as) + L p(w' lw , as )V1rA(w' )} , 
a sE A A w ' EI 

(22) 
where v 1r A ( w) is the value function and 0; A is the optimal 
long-term average reward given the decision policy 7rA. We 
apply the relative value iteration (RVI) algorithm to solve this 
problem. The details are shown in Algorithm 1: 

Algorithm 1: The RVI Algorithm to Solve the MDP 
Given the decision policy 1r A 

Input: The MOP tuple Atr:;;'t)p , E, 7rA; 
1 Initialization: lc/w E I, V,t (w) = 0, V1r~1 (w) = oo, 

k = 0; 
2 Choose w ref arbitrarily; 
3 while 1111,;\ (w) - v:A- 1 (w) II 2: E do 

s for w E I - wre f do 4 l k = k + l; 

6 l v;~(w ) = - gd ~'.!x {n(w , as) + L p(w' lw ,as)V,;A- 1(w') }; 
w ' EI-wre/ 

7 0* (,rA,Trs) = - v:A (w) max {R(w , as) + L p(w' lw ,as )V:A (w' )}; 
a s EA s 

w ' EI 

s for w E I do 
9 l 7rs (7rA , w) = 

argmax { R(w ,as) + Lw'Eip(w' lw , as)V,;'A (w') }; 
as 

Output: 7r5(1rA), 0*(1rA , 1r5 ) 

With Proposition 1 and Algorithm 1 in hand, we could then 
perform a Brute Force Search across the decision policy space 
YA, thereby acquiring the joint sampling-decision-making pol-
icy. The algorithm, called RVI-Brute-Force-Search Algorithm, 

is elaborated in Algorithm 2. The optimality property of the 
algorithm is illustrated in Theorem 1. 

Algorithm 2: The RVI-Brute-Force-Search Algorithm 
Input: The Dec-POMDP tuple AtDEC- POMDP; 

1 for 1r A E Y do 
2 l Formulate the MDP problem 

Atr:;;'t)p £ (I , As , T~jjp , R ) as given in 
Proposition 1; 

3 Run Algorithm 1 to obtain 1r8(1rA) and 
0*(7rA, 7r5); 

4 Calculate the optimal joint policy: 

{ 7rA = argmin7rA 0; A. 
1rs = 1rs(1rA) 

Output: 1r5 , 1rA 

Theorem 1. The RVl-Brute-Force-Search Algorithm (Algo-
rithm 2) could achieve the optimal joint deterministic policies 
( 1r5 , 1rA ), given that the transition function T 1r A follows a 
unichain. 

Proof If the  the transition function T1r A follows a unichain, 
we obtain from [19, Theorem 8.4.5] that for any 7rA, we 
could obtain the optimal deterministic policy 1r5 such that 
0* ( 1r A, 1r5) :S: 0* ( 1r A, 1r s ). Also, Algorithm 2 assures that 
for any 1r A, 0* ( 1rA , 1r5) :S: 0* ( 1r A , 1r5). This leads to the 
conclusion that for any 1r c = ( 1r s, 1r A) E Y , we have that 

(23) 

IV. SIMULATION RESULTS 

For the simulation setup, we set AA = {0, · · · , 10}, S = 
{so,s1,s2}, V = {v0 , v1, v2} and the corresponding cost is: 

( 0 20 50) C1(Xt, <l>t) = 0 10 20 ' (24) 

We assume C2(1rA(.Xt)) and C3(1rA(.Xt)) are both linear to 
the decision making with C2(1rA(.Xt) = C g • 7rA(Xt) and 
C3(1rA(.Xt)) = C 1 • 7rA(Xt), where Cg = 8 and C 1 = l. 

A. Comparing Benchmarks: Separate Design 
The conventional separate designs treat sampling and deci-

sion making in a two-stage manner: 
(1) For the decision-making process, the decision policy 

7rA is predetermined by a greedy methodology: 

7rA(.Xt) = argmin JE { [c1(.Xt, <l>t) - C2(1rA(.Xt))] + 
aAESA ii>, (25) 

+ C3(1rA(.Xt))} · 

This greedy-based approach entails selecting the decision that 
minimizes the cost in the current step given that the estimate 
Xt is perfect. By calculating (25), we obtain a greedy-based 
decision-making policy 7rA(.Xt) = [0, 3, 7]. 

(2) For the sampling process, the following state-of-the-art 
comparing benchmarks are considered: 
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Fig. 4. Average Cost vs. Sampling Rate under different policies and 
parameters setup. The series of Uniform and Aol-aware policies are obtained 
through shifting the intervals li. and Ii. 

• Uniform. Sampling is triggered periodically, i.e., as (t) = 
].{t=K*Ll.}, where K = 0, l, 2, • • • and ~ E Pf+. For each 
~, the sampling rate is calculated as 1/ ~ and the long-term 
average cost is obtained through Markov chain simulations. 
• Age-aware. Sampling is executed when the Aol attains a 
predetermined threshold, i.e., as (t) = ].{AoI(t)>o}· In Fig. 4, 
we dynamically shift the threshold J to explore the balance 
between sampling rate and utility. 
• Change-aware Sampling is triggered whenever the source 
status changes, i.e., as (t) = n.{XdX,_,}• 
• Optimal Aoll (also Optimal AoCI).The Aoll-optimal 
sampling policy turns out to be as (t) = n.{ x,,,ex,} [10] . 
From [6], the AoCI-optimal sampling policy is as (t) = 
].{ x,,,ex, - AoI(i) }. Note that X t = X t- AoI(t ), these two sam-
phng policies are equivalent. 

B. Co-Design Through GoT 
We observe a close intertwining of sampling and decision-

making, indicating that a separate design cannot achieve opti-
mal performance. By introducing the 4-dimensional GoT and 
reformulating the co-design challenge as a Dec-POMDP prob-
lem, we decouple these processes. Utilizing the RVI-Brute-
Force-Search Algorithm (referenced as Algorithm 2), we solve 
problem Pl, distributively obtaining optimal semantics-aware 
sampling and goal-relevant decision-making policies. 

From Fig. 4, it is evident that the sampler-decision maker 
co-design yields the optimal long-term average utility (as 
represented by the lowest position of the green star on the 
Y axis) and the sparsest sampling rate (as represented by the 
lowest position of the green star on the X axis). This is because 
only information bearing goal-relevant semantics is sampled 
and transmitted. By integrating a well-matched decision policy, 
the proposed goal-oriented semantic-aware sampling method 
outperforms prevailing state-of-the-art results. 

V. CONCLUSION 
In this paper, we have investigated the 4-dimension GoT 

metric to directly describe the goal-oriented system decision-

making utility. Employing the GoT, we have formulated an 
infinite horizon Dec-POMDP problem to accomplish the co-
design of sampling and decision making. We have devel-
oped the RVI-Brute-Force-Search Algorithm to attain opti-
mal joint policies. Comparative analyses have verified that 
the proposed goal-oriented sampler-decision maker co-design 
enhances sparse sampling while maximizing the utility, sig-
nifying a promising step towards a sparse sampler and goal-
oriented decision maker co-design. 
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